您现在的位置是:网站首页> 编程资料编程资料
Python+OpenCV实现图片中的圆形检测_python_
2023-05-26
479人已围观
简介 Python+OpenCV实现图片中的圆形检测_python_
效果展示



中心的三个没检测到
import cv2 import numpy as np import matplotlib.pyplot as plt w = 20 h = 5 params = cv2.SimpleBlobDetector_Params() # Setup SimpleBlobDetector parameters. print('params') print(params) print(type(params)) # Filter by Area. params.filterByArea = True params.minArea = 10e1 params.maxArea = 10e3 params.minDistBetweenBlobs = 25 # params.filterByColor = True params.filterByConvexity = False # tweak these as you see fit # Filter by Circularity # params.filterByCircularity = False # params.minCircularity = 0.2 # params.blobColor = 0 # # # Filter by Convexity # params.filterByConvexity = True # params.minConvexity = 0.87 # Filter by Inertia # params.filterByInertia = True # params.filterByInertia = False # params.minInertiaRatio = 0.01 # img = cv2.imread("circles/circels.jpg",1) img = cv2.imread("circles/Snap_001.jpg",1) gray= cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) # Detect blobs. # image = cv2.resize(gray_img, (int(img.shape[1]/4),int(img.shape[0]/4)), 1, 1, cv2.INTER_LINEAR) # image = cv2.resize(gray_img, dsize=None, fx=0.25, fy=0.25, interpolation=cv2.INTER_LINEAR) minThreshValue = 120 _, gray = cv2.threshold(gray, minThreshValue, 255, cv2.THRESH_BINARY) gray = cv2.resize(gray, dsize=None, fx=2, fy=2, interpolation=cv2.INTER_LINEAR) # plt.imshow(gray) # cv2.imshow("gray",gray) detector = cv2.SimpleBlobDetector_create(params) keypoints = detector.detect(gray) print(len(keypoints)) fig = plt.figure() # im_with_keypoints = cv2.drawKeypoints(gray, keypoints, np.array([]), (0, 0, 255), cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS) im_with_keypoints = cv2.drawKeypoints(gray, keypoints, np.array([]), (0, 0, 255), cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS) plt.imshow(cv2.cvtColor(im_with_keypoints, cv2.COLOR_BGR2RGB),interpolation='bicubic') fname = "key points" titlestr = '%s found %d keypoints' % (fname, len(keypoints)) plt.title(titlestr) plt.show() # cv2.imshow("graykey",gray) # cv2.waitKey() fig.canvas.set_window_title(titlestr) ret, corners = cv2.findCirclesGrid(gray, (w, h), flags=(cv2.CALIB_CB_SYMMETRIC_GRID + cv2.CALIB_CB_CLUSTERING ), blobDetector=detector ) if corners is not None: cv2.drawChessboardCorners(img, (w, h), corners, corners is not None) print("find blob") # # cv2.imshow('findCorners', img) # cv2.waitKey() plt.imshow(img) plt.show()以上就是Python+OpenCV实现图片中的圆形检测的详细内容,更多关于Python OpenCV圆形检测的资料请关注其它相关文章!
相关内容
- Python中文分词库jieba(结巴分词)详细使用介绍_python_
- 基于Python实现对比Exce的工具_python_
- pytorch分类模型绘制混淆矩阵以及可视化详解_python_
- Python OpenCV之常用滤波器使用详解_python_
- python Tkinter模块使用方法详解_python_
- 一行Python命令实现批量加水印_python_
- Python中Matplotlib的点、线形状、颜色以及绘制散点图_python_
- python使用selenium模拟浏览器进入好友QQ空间留言功能_python_
- Scrapy爬虫框架集成selenium及全面详细讲解_python_
- 详解Python调用华为API实现图像标签_python_
